Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
Org Biomol Chem ; 21(37): 7616-7638, 2023 Sep 27.
Article En | MEDLINE | ID: mdl-37682049

In order to obtain novel antagonists of GluN2B subunit containing NMDA receptors, aryloxiranes were opened with benzylpiperidines. Phenyloxiranes 6 and (indazolyl)oxirane 15 were opened regioselectively at the position bearing the aryl moiety. Reaction of the resulting ß-aminoalcohols 7 and 16 with carboxylic acids under Mitsunobu conditions (DIAD, PPh3) led to rearrangement and after ester hydrolysis to the regioisomeric ß-aminoalcohols 9 and 18. This strategy allows the synthesis of amino-ifenprodil 12 as well using phthalimide in the Mitsunobu reaction. Unexpectedly, the isomeric (indazolyl)oxirane 21 reacted with benzylpiperidines to afford both regioisomeric ß-aminoalcohols 22 and 23. In radioligand receptor binding studies, the indazolyl derivative 18a, which can be regarded as indazole bioisostere of ifenprodil, showed high GluN2B affinity (Ki = 31 nM). Replacement of the benzylic OH moiety of ifenprodil by the NH2 moiety in amino-ifenprodil 12 also resulted in low nanomolar GluN2B affinity (Ki = 72 nM). In TEVC experiments, 18a inhibited the ion flux to the same extent as ifenprodil proving that the phenol of ifenprodil can be replaced bioisosterically by an indazole ring maintaining affinity and inhibitory activity. Whereas 10-fold selectivity was found for the ifenprodil binding site over σ1 receptors, only low preference for the GluN2B receptor over σ2 receptors was detected. The log D7.4 value of 18a (log D7.4 = 2.08) indicates promising bioavailability.

2.
J Med Chem ; 66(16): 11573-11588, 2023 08 24.
Article En | MEDLINE | ID: mdl-37580890

Negative allosteric modulation of GluN2B subunit-containing NMDA receptors prevents overstimulation, resulting in neuroprotective effects. Since the phenol of prominent negative allosteric modulators is prone to rapid glucuronidation, its bioisosteric replacement by an indazole was envisaged. The key step in the synthesis was a Sonogashira reaction of non-protected iodoindazoles with propargylpiperidine derivatives. Modification of the alkynyl moiety allowed the introduction of several functional groups. The synthesized indazoles showed very high GluN2B affinity but limited selectivity over σ receptors. Molecular dynamics simulations revealed the same molecular interactions with the ifenprodil binding site as the analogous phenols. In two-electrode voltage-clamp experiments, enantiomeric 3-(4-benzylpiperidin-1-yl)-1-(1H-indazol-5-yl)propan-1-ols (S)-10a and (R)-10a displayed higher inhibitory activity than ifenprodil. In contrast to phenolic GluN2B antagonists, the indazoles were not conjugated with glucuronic acid. It can be concluded that the phenol of potent GluN2B antagonists can be replaced bioisosterically by an indazole, retaining the high GluN2B affinity and activity but inhibiting glucuronidation.


Indazoles , Phenol , Receptors, N-Methyl-D-Aspartate , Binding Sites , Phenols/pharmacology , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Structure-Activity Relationship
3.
Commun Biol ; 6(1): 745, 2023 07 18.
Article En | MEDLINE | ID: mdl-37464013

The TWIK-related spinal cord K+ channel (TRESK, K2P18.1) is a K2P channel contributing to the maintenance of membrane potentials in various cells. Recently, physiological TRESK function was identified as a key player in T-cell differentiation rendering the channel a new pharmacological target for treatment of autoimmune diseases. The channel activator cloxyquin represents a promising lead compound for the development of a new class of immunomodulators. Identification of cloxyquin binding site and characterization of the molecular activation mechanism can foster the future drug development. Here, we identify the cloxyquin binding site at the M2/M4 interface by mutational scan and analyze the molecular mechanism of action by protein modeling as well as in silico and in vitro electrophysiology using different permeating ion species (K+ / Rb+). In combination with kinetic analyses of channel inactivation, our results suggest that cloxyquin allosterically stabilizes the inner selectivity filter facilitating the conduction process subsequently activating hTRESK.


Chloroquinolinols , Potassium Channels , Potassium Channels/chemistry , Binding Sites , Chloroquinolinols/chemistry , Chloroquinolinols/pharmacology , Membrane Potentials
4.
Arch Pharm (Weinheim) ; 355(11): e2200225, 2022 Nov.
Article En | MEDLINE | ID: mdl-35908158

Negative allosteric modulators of N-methyl- d-aspartate receptors containing the GluN2B subunit represent promising drug candidates for the treatment of various neurological disorders including stroke, epilepsy, and Parkinson's disease. To increase the bioavailability and GluN2B affinity, the phenol of the potent benzazepine-based inhibitor, WMS-1410 (3), was replaced bioisosterically by a benzoxazolone moiety and the phenylbutyl side chain was conformationally restricted in a phenylcyclohexyl substituent. A four-step, one-pot procedure transformed the oxazolo-benzazepine 7 into the phenylcyclohexyl derivative 11. The same protocol was applied to the methylated analog 12, which unexpectedly led to ring-contracted oxazolo-isoquinolines 18. This rearrangement was explained by the additional methyl moiety in the 8-position inhibiting the formation of the planar intermediate iminium ion with phenylcyclohexanone. The allyl protective group of 11 and 18 was removed with RhCl3 and HCl to obtain the tricyclic compounds 5 and 19 without substituent at the oxazolone ring. The structures of the rearranged products 18 and 19 were elucidated by X-ray crystal structure analysis. The oxazolo-isoquinoline trans-18 with allyl moiety (Ki = 89 nM) and the oxazolo-benzazepine 5 without substituent at the oxazolone ring (Ki = 114 nM) showed GluN2B affinity in the same range as the lead compound 3. In two-electrode voltage clamp measurements, 5 displayed only weak inhibitory activity.


Phenol , Receptors, N-Methyl-D-Aspartate , Humans , Molecular Structure , Receptors, N-Methyl-D-Aspartate/metabolism , Structure-Activity Relationship , Oxazolone , Benzazepines/chemistry , Benzazepines/pharmacology , Alkylation , Phenols , Chromosome Aberrations
5.
Arch Pharm (Weinheim) ; 355(9): e2200147, 2022 Sep.
Article En | MEDLINE | ID: mdl-35606894

Tricyclic tetrahydrooxazolo[4,5-h]-[3]benzazepin-9-ols 22 were designed as phenol bioisosteres of tetrahydro-3-benzazepine-1,7-diols. Key features of the synthesis are the introduction of the trifluoromethylsulfonyl and allyl protective groups at the heterocyclic N-atoms. Two methods were developed to convert the triflyl-protected ketone 16 into tricyclic alcohols 21 bearing various N-substituents. According to the first method, trifluoromethanesulfinate was removed by K2 CO3 . Following the selective reduction of the imino moiety of 17 with NaBH(OAc)3 afforded the aminoketone 18, which was reductively alkylated and reduced. According to the second method, both the imine and the ketone of the iminoketone 17 were reduced with NaBH4 to yield the aminoalcohol 20, which was alkylated or reductively alkylated to form tertiary amines 21f-21r. In the last step, the allyl protective group of 21 was removed with RhCl3 and HCl to obtain oxazolones 22. In receptor binding studies using [3 H]ifenprodil as radioligand ketone, 22m showed the highest GluN2B affinity (Ki = 88 nM). However, a reduced affinity toward GluN2B subunit-containing N-methyl- d-aspartate (NMDA) receptors was observed for oxazolones 22 compared to bioisosteric 3-benzazepine-1,7-diols. High selectivity of 22m for the ifenprodil binding site of GluN2B-NMDA receptors over the 1-(1-phenylcyclohexyl)piperidine binding site and σ2 receptors was observed, but only negligible selectivity over σ1 receptors. In two-electrode voltage clamp experiments, the 4-phenylbutyl derivative 22d (Ki = 422 nM) demonstrated 80% inhibition of ion flux at a concentration of 1 µM. The differences in GluN2B affinity and inhibitory activity are explained by docking studies. In conclusion, 22d is regarded as a novel scaffold of highly potent GluN1/GluN2B antagonists.


Phenol , Receptors, N-Methyl-D-Aspartate , Benzazepines/chemistry , Benzazepines/pharmacology , Benzoxazoles , Ketones , Phenols , Receptors, Amino Acid , Receptors, N-Methyl-D-Aspartate/metabolism , Structure-Activity Relationship
...